
www.landesbioscience.com	 Plant Signaling & Behavior	 e24564-1

Plant Signaling & Behavior 8:6, e24564; June 2013; © 2013 Landes Bioscience

 SHORT COMMUNICATION SHORT COMMUNICATION

*Correspondence to: Alok Shukla and Narendra Tuteja; Email: alokpantnagar@gmail.com and narendra@icgeb.res.in
Submitted: 03/20/13; Revised: 04/04/13; Accepted: 04/04/13
Citation: Dhyani K, Ansari MW, Rao YR, Verma RS, Shukla A, Tuteja N. Comparative physiological response of wheat genotypes under terminal heat stress. Plant 
Signal Behav 2013:8: e24564; http://dx.doi.org/10.4161/psb.24564

Introduction

Wheat is a important cereal second to rice as the main human 
food crop. In 2011 world production of wheat was 704 million 
tons.1 Based on latest figures, the overall decrease in world cereal 
output this year comprises a 5.7% reduction in wheat produc-
tion.2 Several environmental constraints specially high tem-
perature and water deficit3-5 are responsible for serious threat in 
wheat production. The huge yield reduction and quality loss of 
wheat crop due to terminal heat stress particularly at the time 
of grain filling is receiving great concern to develop thermotol-
erance wheat cultivars.6-8 Physiological responses of wheat crop 
to terminal heat stress have been found to effectively determine 
genotype resistance or susceptibility.9 The terminal heat stress 
was at anthesis and grain filling stages accelerate maturity and 
significantly reduce grain size, weight and yield.10 Plant metabo-
lites in complex biosynthetic pathways are believed to be affected 
by terminal heat stress.9 It showed the changes in cell membrane 
structure11 and antixidants including proline accumulation12 
and chlorophyll contents and thereby plant senescence9 which 
leads to shortening of the period of photosynthetic activity.13 All 
these impaired physiology of wheat plant under terminal heat 
stress restrict plant growth and productivity,9 particularly when 
it occurs during reproductive stages.14 There is urgent need for 
immediate attention to develop heat tolerance wheat genotypes 
by combining different approaches. The enhanced membrane 
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thermostability, canopy function, stable green habit, better mobi-
lization rate of food reserve and other technical or physiological 
parameters might be helpful to overcome yield loss under termi-
nal heat stress.12 In vitro studies of wheat plants in combination 
with genetic manipulation to develop heat tolerant wheat are of 
limited success. Therefore, the complex physiological–genetic 
approach could be useful to acquire heat tolerance in wheat to 
minimize the farmer’s risk for reduced yield and low quality grain 
product. Here, Physiological evaluation of wheat genotypes was 
performed under timely and late sown condition.

Results

Estimation of chlorophyll index (SPAD-values), leaf area index 
(LAI) and proline content. Chlorophyll content (SPAD-values) 
of wheat genotypes viz., DBW-140, RAJ-3765, PBW-574, K-0-
307 and HS-240 under timely and late sown was calculated after 
30, 50, 70, 90 and 110 d. It was found that SPAD-values affected 
under timely and late sown conditions were 41.5, 38.9, 37.08, 
37.67, 47.7, 47.59, 46.56, 46.73, 41.03, 40 and 40.15, 34.5, 34.76, 
33.33, 45.63, 44, 43.03, 42.52, 4,137 after 90 and 110 d, respec-
tively. Chlorophyll content of PBW-574, K-0-307 and HS-240 
genotypes was reduced in late sown condition (38.90, 44.73 
and 40.00) as compared with timely sown (34.50, 41.52 and 
37.00) after 90 and 110 d. It was little lower in wheat genotype 
RAJ-3765 after 110 (Fig. 1A). Leaf area index (LAI) of tested 
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and HS-240 genotypes showed highest reduction 
in LAI (0.3, 1.36, 3.78, 3.0 and 0.37, 2.08, 3.94, 
3.29) at 30, 70 and 90 d after sowing, respectively 
(Fig. 1B). The proline content (μg g−1 FW) was 
found to be increased in all the genotypes stud-
ied (30.25, 160.5, 135.2, 262.1, 184.0 and 221.68, 
236.55, 261.77, 419.35) under late sown condi-
tion as compared with that of timely sown condi-
tion (89.6, 106.8, 119.6, 62.0 and 21.98, 20.66, 
37.0, 20.86, 18.37) at both anthesis and 15 DAS, 
except DBW-140 (214.67 and 118.6), respectively 
(Fig. 1C).

Evaluation of malondialdehyde (MDA) con-
tent, superoxide dismutase (SOD) activity, heat 
susceptibility index (s) (HIS) and yield associ-
ated traits. The amount of malondialdehyde 
(MDA) (μ mole g−1 FW) produced when polyun-
saturated fatty acids in the membrane undergone 
lipid peroxidation in wheat genotypes were cal-
culated as 13.06, 11.80 and 7.26, 4.23 in HS 240 
and K-0-307 genotypes respectively at the time of 
anthesis in late sown and timely sown conditions. 
The similar trends were also observed in HS 240 
and K-0-307 genotypes 15 DAS, which followed 
by Raj 3765, DBW 140 and PBW 574 genotypes 
(Fig. 2A). There is no significant increase in super-
oxide dismutase (SOD) activity (unit mg−1 FW) 
in genotypes evaluated at anthesis stage under 
timely and late sown conditions. In contrast, 
after 15 d of anthesis SOD activity was highest in 
RAJ-3765 (1.88) whereas in HS-240 and K-0-307 
genotypes it was lowest (1.63 and 1.60) under late 
sown condition (Fig. 2B). The heat susceptibility 
index (HIS) of HS 240 and K-0-307 wheat geno-
types was highest (1.33, 1.57, 1.51 and 1.17, 1.34, 
1.65), which followed by DBW 140, Raj 3765 and 
PBW 574 genotypes (0.846, 0.649 and 0.411), 
(0.780, 0.905 and 0.905) and (0.897, 0.457 abd 
0.682) for 1000-grain weight, grain weight and 
grain yield, respectively (Fig. 2C). Yield loss due 
to terminal heat stress was highest in sensitive 
genotypes or in the genotypes which are recom-
mended for timely sown condition. The high-
est yield loss 54.76% was recorded in genotype 
HS-240 followed by K-0-307 (44.41%) and low 
yield loss was recorded in DBW-140 followed by 
Raj 3,765 and PBW-574. The genotype DBW-140 
showed highest harvest index in both timely and 
late sown conditions whereas in HS-240 it was 
lowest (Table 1).

Discussion

To evaluate wheat genotypes against terminal 
heat stress, five wheat genotypes were examined for consecutive 
two years under temperature regime for timely (26.9 ± 1°C) 

genotypes was not remarkably affected after 30 d under timely 
and late sown conditions. Under late sown condition, K-0-307 

Figure 1. Estimation of chlorophyll index (SPAD-values), leaf area index (LAI) and proline 
content in wheat genotypes viz., DBW-140, RAJ-3765, PBW-574, K-0-307 and HS-240 
under timely and late sown conditions. Leaf chlorophyll content (SPAD-values) was 
recorded in the flag leaves, using a self-calibrating SPAD chlorophyll meter (Minolta). 
Thirty flag leaves per plant were used to calculate the chlorophyll index value that is 
proportional to the amount of chlorophyll (A). Leaf area index (LAI) was measured with 
the help of Plant Canopy Analyzer (LAI-2000, LI-COR) (B). Proline content (μg g−1 FW) 
in wheat genotypes was calculated at anthesis and at 15 DAS (days after anthesis) (C). 
Vertical lines on top of bars indicate standard error of means.
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process leading to reduce cell function. Therefore, its detoxifi-
cation by antioxidant systems is important for protecting plant 

and late sown condition (23.5 ± 1°C). Contents of green plant 
pigments including carotenoids and their ratios are good indi-
cators of stress detection and tolerance in plants.15 Analysis 
of variance showed the significant differences between the 
groups in parameters studied. It has been reported that the 
terminal heat stress imposes complicate the problems for har-
vesting higher yield.16 Heat stress declined chlorophyll con-
tents in cool-season cereal species which leads to physiological 
changes and thereby leaf senescence.17 In this study, chloro-
phyll content (SPAD value) of heat sensitive genotypes (HS-
240 and K-0-307) was highly reduced in late sown condition 
as opposed to timely sown (Fig. 1A). Changes in chlorophyll 
content are also indicative of tolerant and susceptible nature 
of genotypes under strong light, high temperature and dry air 
environmental conditions in timely and late sowing cultivars. 
Further, it is important to understand that how terminal heat 
stress particularly impairs chlorophyll biosynthesis. Similarly, 
leaf area index (LAI) was also affected by genotypes and 
planting dates.17 In present study, reduction in LAI was high 
in sensitive genotypes as compared with tolerant genotype. 
Reduction in LAI was found after 70 and 90 d after sowing 
variety PBW-574 and K-0-307 showed highest reduction in 
LAI after 70 d after sowing. Ninety days after sowing maxi-
mum reduction in LAI was found in wheat genotype K-0-307 
and HS-240 (Fig. 1B). Reduction in LAI was fast in late sown 
condition as compared with timely sown condition. Thus in 
response to terminal heat stress, the leaf area confines to small 
to support the required vegetative growth. Genotypic varia-
tions in proline accumulation have been observed in many 
studies and attempts were made to correlate its accumula-
tion with tolerance of plants to stress.18 These findings of the 
present investigation are similar with that of Gangopadhyay 
et al.19 who reported that proline regulate the growth under 
different stresses. Proline was higher in wheat during water 
stress and its level increased in stress condition.20 This evident 
correlation between proline accumulation and environmental 
stress suggests that proline could have a protective function.21 
The suitability of proline accumulation under terminal heat 
stress of timely and late sown wheat genotype is taken into 
account. In this study, proline was found to be increased in 
all the genotypes studied under late sown condition except 
DBW-140 (Fig. 1C).

Lipid peroxidation has been found to increase as a prolong 
exposure to heat.22 High MDA content indicates membrane 
lipid peroxidation.23 Here, we observed a highest malondi-
aldehyde (MDA) in HS 240 and K-0-307 wheat genotype 
under late sown conditions (Fig. 2B). These findings are in 
line with the findings of Sairam et al.24 who also reported 
increase in MDA content in heat sensitive genotypes of wheat. 
Under optimum temperature conditions, plants maintain a 
balance between producing and scavenging active oxygen spe-
cies. Heat stress may disturb this balance and promote lipid 
peroxidation, either by increasing the production of active 
oxygen or by decreasing the free radical scavenging ability 
in cell.25 Heat stress triggers the production of reactive oxygen 
species (ROS).26 The accumulated of ROS affect physiological 

Figure 2. Evaluation of malondialdehyde (MDA) content, superoxide 
dismutase (SOD) activity and heat susceptibility index (s) (HIS) in wheat 
genotypes viz., DBW-140, RAJ-3765, PBW-574, K-0-307 and HS-240 under 
timely and late sown conditions. The extent of lipid peroxidation was 
evaluated by calculating the concentration of thiobarbituric acid reactive 
substances as malondialdehyde equivalent using the extinction coef-
ficient (155 mM−1 cm−1) (A). Superoxide dismutase activity was determined 
by measuring its ability to inhibit the photochemical reduction of nitro-
blue tetrazolium (NBT) in the presence of riboflavin in light (B). The heat 
susceptibility index (s) for yield characters per genotype was calculated 
(C). Vertical lines on top of bars indicate standard error of means.
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leaves per plant were used to calculate the chlorophyll index 
value that is proportional to the amount of chlorophyll. Leaf 
area index (LAI) was recorded with the help of Plant Canopy 
Analyzer (LAI-2000, LI-COR). The individual green leaf were 
measured and expressed as leaf area index (LAI), which repre-
sents leaf area per plot area.

Quantification of proline, malondialdehyde (MDA) con-
tent and superoxide dismutase (SOD) activity in wheat gen-
otypes. Wheat leaf segments (500 mg) were homogenized in 
10 ml of 3% sulphosalycylic acid followed by centrifugation 
at 10,000 rpm for 20 min. The supernatant was used for pro-
line estimation. The total proline content was calculated and 
expressed on fresh weight basis.34

Malondialdehyde (MDA) was measured by the method of 
Heath and Packer.35 The extent of lipid peroxidation was evalu-
ated by the thiobarbituric acid reaction. Frozen plant tissue was 
homogenized in 0.1% trichloroacetic acid (1:10, w:v) and cen-
trifuged at 10,000 g for 15 min. One ml of the supernatant 
was incubated with 4 ml of 0.5% thiobarbituric acid in 20% 
trichloroacetic acid at 95°C for 30 min in a fume hood and then 
cooled in ice bath. After centrifugation at 10,000 g for 10 min, 
the absorbance of the supernatant was read at 532 nm and cor-
rected for the non-specific absorbance recorded at 600 nm. The 
concentration of thiobarbituric acid reactive substances was 
calculated as malondialdehyde equivalent using the extinction 
coefficient (155 mM−1 cm−1).

Superoxide dismutase activity was determined by measuring 
its ability to inhibit the photochemical reduction of nitro-blue 
tetrazolium (NBT) in the presence of riboflavin in light.36 One 
unit of enzyme activity was determined as the amount of the 
enzyme needed for the inhibition of 50% NBT reduction rate 
by monitoring absorbance at 560 nm with spectrophotometer.

Growth and yield traits. Physiological traits were recorded 
for each individual wheat genotype for two consecutive years. 
The yield characters like grain yield, 1,000 grain weight and 
grain weight per spike were studied. The heat susceptibil-
ity index (s) for yield characters per genotype was calculated 
by method as described by Fischer and Maurer (1978)37 with 
the following formula: SI = (1 − Xh/X)/(1 − Yh/Y), where Xh 

cell against damaged caused by heat stress.27 There is no sig-
nificant increase in superoxide dismutase (SOD) activity (unit 
mg−1 FW) in genotypes evaluated at anthesis stage under timely 
and late sown conditions. In contrast, after 15 d of anthesis 
SOD activity was highest in RAJ-3765 under late sown condi-
tion (Fig. 2B). Almeselmani et al.28 who reported that late and 
very late planting in case of wheat exhibited high SOD activity 
in late sowing condition. Further, heat stress caused a signifi-
cant increase in SOD activity both in root and shoot tissue of 
the hexaploid cultivars.29 In order to determine relative toler-
ance, heat susceptibility index (HSI) was estimated to charac-
terize wheat genotypes as highly heat tolerant (HSI < 0.50), 
heat tolerant (HSI: 0.51–0.75), moderately heat tolerant (HSI: 
0.76–1.00) and heat susceptible (HSI > 1.00).30 The HSI value 
for grain yield was maximum in DBW 140 which followed by 
RAJ-3765 (Fig. 2C). The PBW-574 had lowest HSI value (< 
1) which explains its heat tolerant potential. In contrast, geno-
types HS-240 and K-0-307 had value (> 1) of HSI are suscep-
tible in terms of yield.

The terminal heat stress during growth and development at 
reproductive stage has been found to affect kernel weight and 
kernel number31 and prolong exposure to heat cloud reduce yield 
and decrease the quality of cereal.32,33 Here, we observed that 
yield loss due to terminal heat stress under late sown condition 
was highest in either sensitive genotypes or the genotypes which 
are recommended for timely sown condition. The highest yield 
loss 54.76% was recorded in genotype HS-240 followed by 
K-0-307 (44.41%) and low yield loss was recorded in DBW-140 
followed by Raj 3765 and PBW-574. The genotype DBW-140 
showed highest harvest index in both timely and late sown con-
ditions and least was in HS-240 (Table 1). High temperature 
stress during post anthesis period of late sown crop might be the 
reason for its low yield. The findings suggest that the screened 
genotypes for better yield and high tolerance potential could be 
used as a genetic stock for further improvement in grain yield 
during terminal heat stress.

Materials and Methods

Experimental conditions. The wheat genotypes (Triticum aes-
tivum L) viz., DBW-140, RAJ-3765, PBW-574, K-0-307 and 
HS-240 were selected for field experiments conducted at Dr. 
N.E. Borlaug Crop Research Centre of GB Pant University 
Agriculture and Technology, Pantnagar, India in rabi sea-
son during 2009–2010. The sowing date (November 20 and 
December 23) for timely (26.9 ± 1°C) and late sown (23.5 ± 
1°C) was similar for 2009- and 2010-field trial. The experiment 
was conducted in three replicates, in split plot design with seven 
rows and 23 cm inter row spacing. Weekly maximum and mini-
mum temperature were recorded from meteorological center at 
Pantnagar throughout the season. Wheat genotype DBW-140, 
RAJ-3765, PBW-574 were taken as heat tolerant and HS-240 
and K-0-307 as heat sensitive.

Evaluation of chlorophyll index and leaf area index. 
Chlorophyll index was recorded in the flag leaves, using a self-
calibrating SPAD chlorophyll meter (Minolta). Thirty flag 

Table 1. Grain yield and harvest index of wheat genotypes under timely 
and late sown conditions

Grain yield (tons/ha) Harvest Index

Timely sown Late sown Timely sown Late sown

DBW 140 4.73 3.49 41.39 34.21

RAJ 3765 4.35 3.13 38.70 28.86

PBW 574 4.67 3.36 36.86 31.07

HS 240 3.69 1.68 29.49 18.07

K-0-307 3.67 2.04 30.87 27.61

*1

*2

S.Em

0.200

0.197

CD 5%

0.568

0.605

S.Em

1.37

1.43

CD 5%

3.92

4.76

*1, for comparing two varieties at same dates; *2, for comparing two 
dates at same or different varieties.
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was evident in tolerant genotypes associated with physiological 
process and stable yield under terminal heat stress. This study 
concludes that the wheat genotypes affected by prolonged heat 
stress are found to differ in their ability to respond, thereby tol-
erance, which could be useful as genetic stock to develop wheat 
tolerant varieties in breeding programs.
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and X are the phenotypic means for each genotype under heat 
stressed and control conditions, respectively, and Yh and Y are 
the phenotypic means for all genotypes under heat stressed and 
control conditions, respectively.

Statistical analysis. Results were analyzed by one-way 
ANOVA to identify significant differences between the groups 
and their significance levels (p < 0.05) were determined.

Conclusions

The selection of wheat genotypes with better grain yield and 
tolerance is the principal aim of wheat production. In this 
study, terminal heat stress caused significant changes in chloro-
phyll content, leaf area index grain yield, proline content, lipid 
peroxidation, grain yield and heat susceptibility index in wheat 
genotype studied. Significant reductions in chlorophyll content, 
MDA, LAI, yield and yield components under stress conditions 
were observed. The protective role of proline content and SOD 
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